Improved Pollutant Predictions in Large-eddy Simulations of Turbulent Non-premixed Combustion by Considering Scalar Dissipation Rate Fluctuations

نویسنده

  • H. PITSCH
چکیده

In this study a new formulation of the unsteady flamelet model is derived to account for the locally resolved distribution of the scalar dissipation rate obtained from large-eddy simulations (LES). Starting from the unsteady flamelet equations, a transformation leads to an Eulerian flamelet model, in which the scalar dissipation rate appears as function of time, space, and mixture fraction. In previous work, it has been shown that LES provides most of the fluctuations of the scalar dissipation rate. Therefore, the present model can be solved within an LES using a local fluctuating scalar dissipation rate. The model is applied to the Sandia flame D, which is a partially premixed, piloted jet diffusion flame. Previously, we have investigated this flame with an unsteady flamelet model, in which only conditionally averaged values for the scalar dissipation rate have been used. Compared to this simulation, accounting for scalar dissipation rate fluctuations leads to improved predictions of the flame structure. In particular, a region of heat release in the rich region of the flame, which is caused by the partial premixing of the fuel with air, does not occur if scalar dissipation rate fluctuations are considered, which is in agreement with the experimental data. This also leads to strongly improved predictions of the mass fractions of stable intermediate chemical species, such as CO and H2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matching Conditional Moments in PDF modelling of non-premixed combustion

The rate of generation of fluctuations with respect to the scalar values conditioned on the mixture fraction, which significantly affects turbulent non-premixed combustion processes, is examined in the paper. Simulation of the rate in major mixing model is investigated and the derived equations can assist in selecting the model parameters so that level of conditional fluctuations is better repr...

متن کامل

Scalar Mixing and Dissipation Rate in Large-eddy Simulations of Non-premixed Turbulent Combustion

Predictions of scalar mixing and the scalar dissipation rate from large-eddy simulations of a piloted nonpremixed methane/air diffusion flame (Sandia flame D) using the Lagrangian-type flamelet model are presented. The results obtained for the unconditionally filtered scalar dissipation rate are qualitatively compared with general observations of scalar mixing from experiments in non-reactive a...

متن کامل

Stochastic modeling of scalar dissipation rate fluctuations in non-premixed turbulent combustion

where DZ is the diffusion coefficient of the mixture fraction. The scalar dissipation rate appears in many models for turbulent non-premixed combustion as, for instance, the flamelet model (Peters (1984), Peters (1987)), the Conditional Moment Closure (CMC) model (Klimenko & Bilger (1999)), or the compositional pdf model (O’Brien (1980), Pope (1985)). In common technical applications, it has be...

متن کامل

Large-Eddy Simulation of Turbulent Combustion

In recent years, Large Eddy Simulation (LES) has been successfully applied to non-premixed and premixed turbulent combustion problems [1, 2, 3]. In most technical combustion applications, the pure non-premixed or premixed combustion models are no longer valid, since partially premixed combustion has to be taken into account. An example is the stabilization region of a lifted non-premixed flame....

متن کامل

Coupling the Conditional Moment Closure Model to a Fully Compressible Large Eddy Simulation Algorithm

The Conditional Moment Closure (CMC) model provides a means of closing the subgrid terms for the reaction rates through the assumption that departures of the mean filtered reaction rate (conditional on a mixture fraction or progress variable) are small. Turbulentchemistry interaction is incorporated through a conditional scalar dissipation. To date, all Large Eddy Simulation implementations of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003